High Speed Fiber Optical Phase Modulators-Low Voltage Thin Film Lithium Niobate

The Thin Film Lithium Niobate Fiberoptic Modulators (TLNM) series offers advantageous features of a low driving half-wave voltage of 2.8 V and broadband high speed of up to 40GHz. These improvements over the traditional Lithium Niobate Fiberoptic Modulators are achieved by more efficient smaller and shorter waveguides made possible by thin film LiNbO3. Its low operating voltage makes it more efficient to convert RF signal into optical and convenient to use a function generator as the driver for laboratory applications. It has a bias control section that integrates with a micron heater, a photodetector for feedback control that maintains a constant optical bias point. The high-speed modulation control is through an SMA connector, and the bias control is through pins. Custom special design is also available.

Features

- Low Half-Wave Voltage ~2.8V
- Up to 40GHz Speed

Applications

- Radar
- RoF
- Laboratory Uses
- Concept Proving
- Instrumentation

Specifications

Parameter	Min	Typical	Max	Unit		
Operation Wavelength		1520		1567	nm	
Insertion Loss			4.5	5.5	dB	
Return Loss		27		40	dB	
Optical Input Power				10	dBm	
RF Driving Voltage		3.3 (1kHz)	4 (1GHz)		V	
Vp at 50kHz		2.8		3	V	
3dB Bandwidth S21 (from 2GHz)		DC	20	40	GHz	
RF Return Loss S11(10MHz to 40 GHz)				10	dB	
RF Port Resistance (DC)				50	Ω	
RF Input Power				30	dBm	
Bias Port Resistance (DC)				1	ΜΩ	
Heater Bias Voltage		0		4	V	
DE Coning Maltage	X2:4	-4.46		+4.46	V	
RF Swing Voltage	X2:5	-891		+891		
ER RMS Voltage	X2:4			3.16	٧	
	X2:5			6.30		
Operating Temperature		-1		60	°C	
Storage Temperature		-45		85	°C	

Notes:

Over the maximum power input will burn the device over time

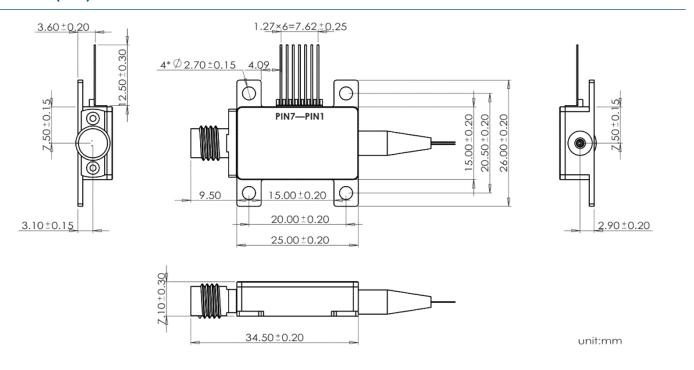
Legal notices: All product information is believed to be accurate and is subject to change without notice. Information contained herein shall legally bind Agiltron only if it is specifically incorporated into the terms and conditions of a sales agreement. Some specific combinations of options may not be available. The user assumes all risks and liability whatsoever in connection with the use of a product or its application.

Rev 08/22/24

© Photonwares Corporation

P +1 781-935-1200

E sales@photonwares.com


www.agiltron.com

High Speed Fiber Optical Phase Modulators-Low Voltage Thin Film Lithium Niobate

Dimensions (mm)

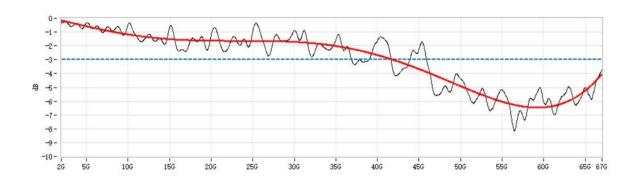
^{*}Product dimensions may change without notice. This is sometimes required for non-standard specifications.

Electrical Connection

PIN	Symbol	Description			
1	-	N/A			
2	-	N/A			
3	-	N/A			
4	-	N/A			
5	-	N/A			
6	-	N/A			
7	-	N/A			
RF	RF connector*	2.92mm connector			
In	Input fiber	FC/APC, PMF			
Out	Output fiber	FC/APC, PMF			

Ordering Information

	2								
Prefix	Configuration	Auto Bias Controller	Wavelength	Frequency	Input Fiber	Output Fiber	Cable	Fiber Length	Connector
TLNM-	Phase = 2	No = 1 Yes = 2 Special = 3	1520-1570nm = 2	20GHz = 2 40GHz = 4 50GHz = 5 60GHz = 6	PM1550 = 5	PM1550 = 5 SMF28e = 1	0.9mm tube = 1 Special = 0	0.5m = 1 Special = 0	None = 1 FC/PC = 2 FC/APC = 3 Special = 0


© Photonwares Corporation P +1 781-935-1200 E sales@photonwares.com W www.agiltron.com

High Speed Fiber Optical Phase Modulators-Low Voltage Thin Film Lithium Niobate

Typical RF S21 Performance

Application Notes

Fiber Core Alignment

Note that the minimum attenuation for these devices depends on excellent core-to-core alignment when the connectors are mated. This is crucial for shorter wavelengths with smaller fiber core diameters that can increase the loss of many decibels above the specification if they are not perfectly aligned. Different vendors' connectors may not mate well with each other, especially for angled APC.

Fiber Cleanliness

Fibers with smaller core diameters (<5 μm) must be kept extremely clean, contamination at fiber-fiber interfaces, combined with the high optical power density, can lead to significant optical damage. This type of damage usually requires re-polishing or replacement of the connector.

Maximum Optical Input Power

Due to their small fiber core diameters for short wavelength and high photon energies, the damage thresholds for device is substantially reduced than the common 1550nm fiber. To avoid damage to the exposed fiber end faces and internal components, the optical input power should never exceed 20 mW for wavelengths shorter 650nm. We produce a special version to increase the how handling by expanding the core side at the fiber ends.